Fast Nonsmooth Regularized Risk Minimization with Continuation

نویسندگان

  • Shuai Zheng
  • Ruiliang Zhang
  • James T. Kwok
چکیده

In regularized risk minimization, the associated optimization problem becomes particularly difficult when both the loss and regularizer are nonsmooth. Existing approaches either have slow or unclear convergence properties, are restricted to limited problem subclasses, or require careful setting of a smoothing parameter. In this paper, we propose a continuation algorithm that is applicable to a large class of nonsmooth regularized risk minimization problems, can be flexibly used with a number of existing solvers for the underlying smoothed subproblem, and with convergence results on the whole algorithm rather than just one of its subproblems. In particular, when accelerated solvers are used, the proposed algorithm achieves the fastest known rates of O(1/T ) on strongly convex problems, and O(1/T ) on general convex problems. Experiments on nonsmooth classification and regression tasks demonstrate that the proposed algorithm outperforms the state-of-the-art.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Quasi-Newton Approach to Nonsmooth Convex Optimization

We extend the well-known BFGS quasiNewton method and its limited-memory variant (LBFGS) to the optimization of nonsmooth convex objectives. This is done in a rigorous fashion by generalizing three components of BFGS to subdifferentials: The local quadratic model, the identification of a descent direction, and the Wolfe line search conditions. We apply the resulting sub(L)BFGS algorithm to L2-re...

متن کامل

A Quasi-Newton Approach to Nonsmooth Convex Optimization A Quasi-Newton Approach to Nonsmooth Convex Optimization

We extend the well-known BFGS quasi-Newton method and its limited-memory variant (LBFGS) to the optimization of nonsmooth convex objectives. This is done in a rigorous fashion by generalizing three components of BFGS to subdifferentials: The local quadratic model, the identification of a descent direction, and the Wolfe line search conditions. We apply the resulting subLBFGS algorithm to L2-reg...

متن کامل

A Fast Numerical Method for Solving a Regularized Problem Associated with Obstacle Problems

Kirsi Majava and Xue-Cheng Tai [12] proposed a modified level set method for solving a free boundary problem associated with unilateral obstacle problems. The proximal bundle method and gradient method were applied to solve the nonsmooth minimization problems and the regularized problem, respectively. In this paper, we extend this approach to solve the bilateral obstacle problems and employ Run...

متن کامل

An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems

The affine rank minimization problem, which consists of finding a matrix of minimum rank subject to linear equality constraints, has been proposed in many areas of engineering and science. A specific rank minimization problem is the matrix completion problem, in which we wish to recover a (low-rank) data matrix from incomplete samples of its entries. A recent convex relaxation of the rank minim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016